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Abstract: Cluster analysis, in unsupervised learning, divides similar data into groups or clusters that are meaningful and useful. 

Due to good performance in clustering on massive data sets K-Means clustering is feasible in multiple areas of science and 

technology. The clustering algorithms may face problems of empty clusters and incomplete data. This empty cluster problem is 

caused by bad initialization of the center point and this may route to signifying performance degradation. In this theme, the K-

Means clustering algorithm is revisited from the probabilistic viewpoint and reformed by the similarity among the K-Means and 

finite Gaussian Mixture Model (GMM). The initial centroids or current best estimate for the parameters are calculated from the 

list of all data, known and unknown. Therefore, any two or more primal centroids may not be equal or not very close to each 

other and data will be assigned to the appropriate clusters with closely fair centroids. The newly proposed modified K-Means 

using GMM of the Expectation Maximization approach efficiently eliminate the empty cluster and incomplete data problems. 
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1. Introduction 

Clustering based on K-Means is allied to some other 

clustering problems. Though K-Means algorithm is one of the 

elite clustering algorithms it has some drawbacks such as (i) 

Non-globular clusters (overlapping in data between clusters); 

(ii) Assume wrong number of clusters; (iii) Finding empty 

clusters; (iv) Bad initialization to centroid point; (v) Inability 

to choose the number of clusters. 

 

The empty cluster problem is caused by bad initialization and 

this may lead to significant performance degradation. The 

trouble of empty clusters arises when the primary center 

vectors are such that any two or more of them are either the 

same or very narrow altogether. In such a state, next to the 

allocation of data to clusters, data will be assigned to one of 

the clusters with nearly the same centers, and the others stay 

empty. This paper presents a new route that efficiently 

eliminates this empty cluster problem. In this theme, K-

Means clustering algorithm is revisited from the probabilistic 

viewpoint and reformed by the relation among K-Means [1] 

and finite Gaussian Mixture Model (GMM) [2]. Also, the 

maximum-likelihood of Expectation Maximization (EM) [3] 

algorithm is applied to find parameters for mixture density 

problems and fill in the missing values for incomplete data 

problems. Here, the proposed algorithm is the merging of two 

popular algorithms which can be used for large as well as 

probabilistic datasets. 

 

The review of literature on related works has been discussed 

in section 2. The K-Means, Gaussian Mixture Model, and 

Expectation Maximization are described in section 3. Section 

4 is devoted to defining the proposed algorithm and section 5 

shows results and then analysis to proof the performance of 

the new approach. The conclusion and future scope of work is 

discussed in section 6. 

 

2. Related Work  

Here begin with the discussion of related works in this 

literature. K-Means [1] is a process where an N-dimensional 

population is separated into K sets on the basis of a sample 

which appears to give groups which are logically effective 

within-class variance. K-Means method is feasible to process 

very large samples. So, the K-Means is computationally fast, 

easy to implement and scientifically efficient. 

 

An iterative computational approach estimates observations 

having partial data based on maximum likelihood. There is an 

‘estimation step’ followed by a ‘maximization step’ which is 

known by EM [3] algorithm, in each iteration of the 

algorithm. The estimation step in the EM algorithm is quit 

equal to a process that first approximates or "fills in" the 

particular data points and then the maximization step 

calculates the adequate statistics by filled-in values. It is 

proper to cover the missing values with their expectations 

given parameter values (E-step), then re-evaluate parameters 

using a least-squares estimation (variance σ2) algorithm (M-
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step), and iterate until the estimates show considerable 

alteration. 

 

The iterative clustering [4] approach computes from a given 

initial value a refined starting condition. This efficient 

approach estimates the modes of distribution. The application 

of this methodology is applied to the well-known K-Means 

clustering algorithm and shows that a substantial refinement 

over randomly chosen starting points indeed leads to improve 

solutions and avoids empty clusters problem. 

 

A reformed version of the K-Means [5] algorithm that 

effectively removes the empty cluster challenge and in which 

the solution is simply to add the current cluster centers to the 

data points when computing new cluster centers at the next 

iteration. There is no execution degradation due to 

incorporated modification. 

 

Yang, M. S. et. al. [6] proposed Expectation Maximization 

clustering algorithm for GMM. The component of GMM was 

proposed by McLachlan, G. J. et. al. [7]. Huang, T. et. al. [8] 

proposed model selection for GMM. Patel, E. et. al. [9] 

proposed GMM in cloud-based clustering. The GMM in e-

government clustering was proposed by Androniceanu, A. et. 

al. [10]. Löffler, M. et. al. [11] proposed GMM in spectral 

clustering. The GMM in transport was proposed by Chen, Y. 

et. al. [12]. Viroli, C. et. al. [13] proposed deep learning-

based GMM. The deep learning-based GMM in image 

registration was proposed by Yuan, W. et. al. [14].  Shahin, I. 

et. al. [15] proposed hybrid GMM and deep neural network 

for emotion recognition. The unsupervised anomaly detection 

using autoencoder-based GMM was proposed by Zong, B. et. 

al. [16]. An, P. et. al. [17] proposed autoencoder-based GMM 

for cyberattack detection. The anomaly detection using GMM 

and long-short term memory was proposed by Ding, N. et. al. 

[18]. Wan, H. et. al. [19] proposed GMM for classification. 

The feature selection using GMM was proposed by Fu, Y. et. 

al. [20]. Singhal, A. et. al. [21] proposed prediction of 

COVID-19 using GMM. The Earthquake phase relationship 

using GMM was proposed by Zhu, W. et. al. [22]. 

 

Many conventional [23-26] and deep learning [27] based 

research works on applications and variants of GMM have 

been found in the literature. It motivates researchers to work 

on variant GMM and compare their merits and demerits. 

 

3. Background Method 

3.1 Mathematical Terms with Definition 
𝑜𝑏𝑗𝑒𝑐𝑡, 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 − 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔,  

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑤ℎ𝑖𝑐ℎ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑 𝑜𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 

𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑘 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

𝑅 − 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑋 − 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑡𝑜 𝑏𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 

𝑥𝑖 − 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑋 

∈ − 𝑠𝑒𝑡 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 

𝐶 − 𝑠𝑒𝑡 𝑜𝑓 𝑘𝑚𝑒𝑎𝑛𝑠 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 

𝑐𝑗 − 𝑘𝑚𝑒𝑎𝑛𝑠 𝑐𝑒𝑛𝑡𝑒𝑟 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝐶 

𝐼(𝛼) − 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝛼 

∑  − 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

𝜇𝑗 − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 

𝑝(𝑗) − 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑗 

 

Here we start with a minute talk of relevant algorithms and 

models. 

3.2 K-Means 

The K-Means [1] clustering is a well-known partitioning 

technique. A clustering method constructs k partitions or a set 

of k clusters and each object of the dataset refers to one 

cluster for given a dataset of n objects and k ≤ n. In every 

cluster, there may be a centroid or a cluster delegate. There 

are different kinds of condition for deciding the significance 

of partitions. Based on the theories, various methods are 

given: K-Means, K-Medoids, and Probabilistic clustering. 

The K-Means algorithm executes the following three steps 

and repeat until stable (= no object move group): 

Step1. Find out the centroid coordinate. 

Step2. Determine the distance of each object to the centroids. 

Step3. Find the nearest centroid and group the object based 

on the least distance. 

3.2.1 Pseudo code for the K-Means algorithm 
𝐼𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑟𝑒

− 𝑘 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑛𝑡𝑒𝑟𝑠), 

𝑋(𝑡ℎ𝑒 𝑛 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠), 𝑎𝑛𝑑  

𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝐶 = {𝑐𝑗}. 

𝑲𝑴𝒆𝒂𝒏𝒔(𝑋 ∈  𝑅𝑛×𝑑, 𝑘, 𝐶) 

1:   𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒 𝑎𝑛𝑦 𝑐𝑗  𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑜 

2:      𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑛} 𝑑𝑜 

3:          𝑐𝑙𝑎𝑠𝑠(𝑥𝑖) ← arg 𝑚𝑖𝑛𝑗 ∥ 𝑥𝑖 − 𝑐𝑗 ∥ 

4:      𝑒𝑛𝑑 𝑓𝑜𝑟 

5:      𝑓𝑜𝑟 𝑗 ∈ {𝑖, … , 𝑘} 𝑑𝑜 

6:        𝑐𝑗  ←  ∑𝑖𝐼(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)  =  𝑗) 𝑥𝑖  / ∑𝑖𝐼(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)  =  𝑗) 

7:      𝑒𝑛𝑑 𝑓𝑜𝑟 

8:   𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

9:   𝑟𝑒𝑡𝑢𝑟𝑛 𝐶 
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The reassignment step of the algorithm computes the 

Euclidean distance. This distance is measured from every 

point to every cluster mean and the minimum is found, by 

calculating, 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖) ← arg 𝑚𝑖𝑛𝑗 ∥ 𝑥𝑖 − 𝑐𝑗 ∥ . Each point is 

then reassigned to a cluster. The centroid update step then 

recalculates the mean of each cluster, and revises 𝑐𝑗 for all j. 
 

3.3 Gaussian Mixture Model 

A Gaussian Mixture Model (GMM) [2] is a parametric model 

of a probability distribution of continual measures. GMM 

parameters are evaluated from a trained prior model by either 

the EM algorithm or Maximum APosteriori (MAP). 

A Gaussian mixture model which is a parametric possibility 

density function is represented as a laded addition of 

𝑛 Gaussian component densities as shown by the equation 1: 

𝑝(𝑥| 𝜆) = ∑𝑗=1
𝑛 𝑤𝑗𝑔(𝑥| 𝜇𝑗, ∑𝑗)                                         (1) 

 

Here, 𝑥 is a d-dimension numeric data, 𝑤𝑗 , 𝑗 = 1 … 𝑛,-are the 

blends of loads, and 𝑔(𝑥| 𝜇𝑗, ∑𝑗), 𝑗 = 1 … 𝑛,-are the element 

Gaussian densities. 

 

Each component density is a d-variant Gaussian function as 

given by the equation 2: 

𝑔(𝑥| 𝜇𝑗, ∑𝑗) =

 exp {−1/2(𝑥 −  𝜇𝑗)′∑𝑗
−1(𝑥 −  𝜇𝑗)} (2𝜋)𝑑/2⁄ |∑𝑗|1/2         (2) 

 

Here, mean vector  μj and covariance matrix ∑j. The mixture 

weights satisfy the restraint that ∑𝑗=1
𝑛 𝑤𝑗 = 1. 

3.4 Expectation Maximization 

The Expectation-Maximization (EM) [3] algorithm is a very 

common and iterative method for the estimation of 

parameters in statistical models where certain observation is 

incomplete through either maximum likelihood or MAP. 

 

EM underlies a class of algorithms in which there are two 

steps: 

 

Step1. The Expectation Step: Using the latest best estimate 

for the parameters of the data model, we make an expression 

for the log-likelihood for all data, seen and unseen, and, 

subsequently, borderline the expression to the unseen data. 

This expression will depend on the latest best estimate for the 

model parameters and the model parameters dealt as 

variables. 

 

Step2. The Maximization Step: Given the expression 

occurring from the former step, for the next estimate we can 

choose those values as model parameters that increase and 

maximize the expectation expression. These give the best 

new estimate for the Bayesian K-Means algorithm. 

 

 

3.4.1 Pseudo code for the Expectation Maximization 

algorithm 
𝐼𝑛𝑝𝑢𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑟𝑒 𝑘, 𝑋, 𝑎𝑛𝑑  

𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑝(𝑗), {𝜇𝑗}, 𝑎𝑛𝑑 {∑𝑗}. 

𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝(𝑥𝑖|𝜇𝑗 , ∑𝑗) − 

𝑖𝑠 𝑡ℎ𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑  

𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑝(𝑥𝑖)𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑚𝑚𝑖𝑛𝑔 𝑜𝑣𝑒𝑟 

 𝑗 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑝(𝑥𝑖|𝜇𝑗 , ∑𝑗) 𝑝(𝑗). 

𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏𝑬𝑴 (𝑋 ∈ 𝑅𝑛×𝑑, 𝑘, 𝑝(𝑗), {𝜇𝑗}, {∑𝑗}) 

1:   𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐿({𝜇𝑗}, {∑𝑗} | 𝑋) 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑑𝑜 

2:       //𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 

3:       𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑛} 𝑑𝑜 

4:          𝑓𝑜𝑟 𝑗 ∈ {𝑖, … , 𝑘} 𝑑𝑜 

5:          𝑝(𝑗 | 𝑥𝑖)  ← 𝑝(𝑥𝑖|𝜇𝑗, ∑𝑗) 𝑝(𝑗) / 𝑝(𝑥𝑖) 

6:          𝑒𝑛𝑑 𝑓𝑜𝑟 

7:       𝑒𝑛𝑑 𝑓𝑜𝑟 

8:       //𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 

9:       𝑓𝑜𝑟 𝑗 ∈ {𝑖, … , 𝑘} 𝑑𝑜 

10:        𝜇𝑗  ←  ∑𝑖
𝑛 𝑝(𝑗 |𝑥𝑖) 𝑥𝑖  / ∑𝑖

𝑛 𝑝(𝑗 |𝑥𝑖) 

11:        𝑝(𝑗) = ∑𝑖  𝑝(𝑗 |𝑥𝑖) / 𝑛 

12:        𝑓𝑜𝑟 𝑙, 𝑚 ∈ {1, … , 𝑑} 𝑑𝑜 

13:        ∑𝑗𝑙𝑚  ← 1 / 𝑛 ∑𝑖
𝑛 𝑝(𝑗 |𝑥𝑖) (𝑥𝑖𝑙 − 𝜇𝑗𝑙)

𝑇(𝑥𝑖𝑚 − 𝜇𝑗𝑚) 

14:        𝑒𝑛𝑑 𝑓𝑜𝑟 

15:     𝑒𝑛𝑑 𝑓𝑜𝑟 

16:   𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

17:   𝑟𝑒𝑡𝑢𝑟𝑛 ({𝜇𝑗}, {∑𝑗}) 

 

E-step of the algorithm is the probability of putting point i to 

cluster j for analogous to the smallest distance and E-step is 

quite equal to the reassignment step of K-Means. M-step then 

perfectly recalculates the means of the new clusters and 

establishing the uniformity of updates. In this case, the EM 

algorithm for mixtures of Gaussians is likely to the K-Means. 

 

4. Proposed Method 

In the proposed algorithm P_Means, the computation of 

centroids of new means varies from that in the K-Means 

algorithm. The initial centroids or current best estimate for 

the parameters are calculated from the log likewise of all 

data. Therefore, any two or more initial centroids may not be 

equal or not very close to each other and data will be 

allocated to the appropriate clusters with closely equal 

centroids. Here, we negate the formation of an empty cluster. 

Also, the expectation part (E Step) is used to estimate missing 

labels to fill in if there is missing data in the datasets. After 

that step, all the data items are present and can be clustered 

easily. After getting all the data items completely these are 
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divided into k clusters. Distance between the two data points 

and the centroid is measured using the Euclidian distance 

function. The implementation steps of the proposed algorithm 

to make clusters are similar to those of the original K-Means 

algorithm. The proposed method is shown in Figure 1. 

 

4.1 Flow chart for the proposed method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of proposed method 

 

4.2 Proposed algorithm 

The proposed algorithm will perform the two steps until 

convergence. 

 

Step 1: In our algorithm Likelihood function, Gaussian 

probability density function and Bayesian theorem are used to 

set the values of empty labels and calculate initial center 

vectors for all data. Also the algorithm computes the 

probabilities of assigning point i to cluster j for the one which 

is the smallest distance. 

 

Step 2: This algorithm calculates the Euclidean distance from 

each point to each cluster mean and finds the least. Each point 

is reassigned to the cluster. Then recomputes the mean of 

each cluster, and updates 𝑐𝑗 for every j. 

 

4.3 Pseudo code for the proposed algorithm 
𝐼𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑟𝑒

− 𝑘 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑛𝑡𝑒𝑟𝑠), 

𝑋(𝑡ℎ𝑒 𝑛 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠),  

𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 𝐶 = {𝑐𝑗}, 𝑎𝑛𝑑 

𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑝(𝑗), {𝜇𝑗}, {∑𝑗}. 

𝑇ℎ𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑝(𝑥𝑖|𝜇𝑗 , ∑𝑗).  

𝑇ℎ𝑒 𝑡𝑒𝑟𝑚 𝑝(𝑥𝑖)𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑚𝑚𝑖𝑛𝑔 𝑜𝑣𝑒𝑟 

𝑗 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑝(𝑥𝑖|𝜇𝑗 , ∑𝑗) 𝑝(𝑗). 

𝑷_𝑴𝒆𝒂𝒏𝒔 (𝑋 ∈ 𝑅𝑛×𝑑, 𝑘, 𝐶, 𝑝(𝑗), {𝜇𝑗}, {∑𝑗}) 

1:   𝑤ℎ𝑖𝑙𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐿({𝜇𝑗}, {∑𝑗} | 𝑋) 𝑎𝑛𝑑 𝑐𝑗  𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑑𝑜 

2:       𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑛} 𝑑𝑜 

3:          𝑓𝑜𝑟 𝑗 ∈ {𝑖, … , 𝑘} 𝑑𝑜 

4:           𝑝(𝑗 | 𝑥𝑖)  ← 𝑝(𝑥𝑖|𝜇𝑗, ∑𝑗) 𝑝(𝑗) / 𝑝(𝑥𝑖) //Bayes Rule 

5:          𝑒𝑛𝑑 𝑓𝑜𝑟 

6:       𝑒𝑛𝑑 𝑓𝑜𝑟 

7:       𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑛} 𝑑𝑜 

8:        𝑐𝑙𝑎𝑠𝑠(𝑥𝑖) ← arg 𝑚𝑖𝑛𝑗 ∥ 𝑥𝑖 − 𝑐𝑗 ∥ 

9:       𝑒𝑛𝑑 𝑓𝑜𝑟 

10:     𝑓𝑜𝑟 𝑗 ∈ {𝑖, … , 𝑘} 𝑑𝑜 

11:      𝑐𝑗  ←  ∑𝑖𝐼(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)  =  𝑗) 𝑥𝑖  / ∑𝑖𝐼(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)  =  𝑗) 

12:     𝑒𝑛𝑑 𝑓𝑜𝑟 

13:   𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

14:   𝑟𝑒𝑡𝑢𝑟𝑛 (𝐶, {𝜇𝑗}, {∑𝑗}) 

 

5. Results and Discussion 

Let us consider a 1-dimensionaldata set (17 data objects): 1, 

3, 2, 5, 6, 2, 3, 1, 36, 45, 3, -15, 17, 95, 31, -30, and -67. We 

tested these data objects through P_Means algorithm. It does 

not form empty cluster where basic K-Means leaves empty 

clusters as given in Table 1. 

 

In the basic K-Means, complexity may be less sometimes 

than P_Means. P_Means is a much more efficient, realistic 

algorithm. The result of the experiment shows that the 

presented clustering algorithm P_Means can solve the empty 

cluster problem as shown in Figure 2 and 3. 

 

It has been found that when the number of clusters increases 

P_Means algorithm can group similar objects into respective 

clusters. In the case of the P_Means algorithm, when the 

value of K is 4 or 7 then similar objects are grouped into 4 or 

7 clusters respectively and no cluster is empty as shown in 

Table 1. For this example, K-Means algorithm creates an 

empty cluster when the value of K is 4 and objects are 

grouped into 3 clusters. For the P_Means algorithm, the 

number of similar objects in each cluster is also shown in the 

graph that when the value of K is 4 then cluster1, cluster2, 

cluster3 and cluster4 have 11, 3, 2 and 1 number of objects 

respectively as shown in Figure 3. 

Input data 

Compute Gaussian 

Probability 

Compute Bayesian 

Likelihood  

Compute Euclidian 

Distance 

Compute Centroids of 

New Means 

Output clusters 
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Table 1: Comparison of K-Means and P_Means 

 

 
Figure 2. Comparison graph of K-Means and P_Means 

Value of k (clusters) Vs No. of output clusters 

 

Figure 3. Performance graph of P_Means 

Value of k (clusters) Vs No. of objects in each cluster 

6. Conclusion and Future Scope  

This paper highlights connections among Gaussian mixture 

models and K-Means clustering algorithms and implements 

the P_Means algorithm for clustering that retain some 

benefits of Bayesian parametric, Gaussian mixture model and 

K-Means algorithm. Although K-Means algorithm is widely 

used it has been found that the clusters generated are not 

proper. Hence to overcome these problems of K-Means 

algorithm, Expectation step and GMM of EM algorithm are 

added to K-Means algorithm. The proposed approach 

P_Means algorithm keeps up all important features of the 

basic K-Means. At the same moment, P_Means removes the 

possibility of making empty clusters and prevents incomplete 

data problems by filling in the missing values and giving the 

best cluster groups, to a great extent, without any significant 

performance degradation. The proposed P_Means algorithm 

is applied to 1-dimensional data, its application to higher 

dimensional data and the quantitative performance measure 

of the non-empty clusters will be our future work.  
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